V = 2757.6 (9) Å³

Mo $K\alpha$ radiation

 $0.45 \times 0.34 \times 0.12 \text{ mm}$

2137 reflections with $I > 2\sigma(I)$

every 97 reflections

intensity decay: <2%

 $\mu = 0.29 \text{ mm}^{-1}$

T = 296 (2) K

 $R_{\rm int} = 0.026$ 3 standard reflections

Z = 4

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N,N'-Dimethyl-*N,N'*-bis[2-(2-pyridyl)ethyl](*p*-phenylenedimethylene)diammonium bis(perchlorate)

Teshome B. Yisgedu, Yohannes T. Tesema, Yilma Gultneh and Ray J. Butcher*

Department of Chemistry, Howard University, Washington, DC 20059, USA Correspondence e-mail: rbutcher99@yahoo.com

Received 16 November 2007; accepted 19 November 2007

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.008 Å; disorder in solvent or counterion; R factor = 0.059; wR factor = 0.172; data-to-parameter ratio = 11.8.

In the title compound, $C_{24}H_{32}N_4^{2+}\cdot 2ClO_4^{-}$, the two N atoms of the amine are protonated. The H atoms of the protonated amine form hydrogen bonds with the pyridyl N atoms (intramolecular) and O atoms of adjacent perchlorate anions. In addition, there are weak $C-H \cdot \cdot \cdot O$ interactions which link the formula units into chains along [101]. Each perchlorate anion is disordered over three conformations, with occupancy factors of 0.482 (2), 0.331 (2) and 0.187 (4), and 0.532 (8), 0.324 (4) and 0.133 (7).

Related literature

For the synthesis, see: Ghosh & Mukherjee (1998). For the monooxygenase activity of the dicopper(I) complexes of the title compound, see: Cruse *et al.* (1988); Karlin *et al.* (1984).

Experimental

Crystal data

 $C_{24}H_{32}N_4^{2+} \cdot 2\text{CIO}_4^{-}$ $M_r = 575.44$ Monoclinic, $P2_1/n$ a = 15.443 (3) Å b = 11.484 (2) Å c = 16.046 (3) Å $\beta = 104.284$ (18)°

Data collection

Bruker P4 diffractometer Absorption correction: ψ -scan (North et al., 1968) $T_{\min} = 0.794, T_{\max} = 0.946$ 6558 measured reflections 6329 independent reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.059$	
$wR(F^2) = 0.172$	
S = 0.95	
6329 reflections	
536 parameters	
272 restraints	

independent and constrained refinement $\Delta \rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.17 \text{ e} \text{ Å}^{-3}$

H atoms treated by a mixture of

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1A - H1NA \cdots N2A$	0.90 (4)	1.95 (4)	2.721 (5)	143 (3)
$N1A - H1NA \cdots O14A$	0.90 (4)	2.45 (4)	3.056 (11)	125 (3)
$N1A - H1NA \cdots O11B$	0.90 (4)	2.72 (4)	3.180 (17)	113 (3)
$N1B - H1NB \cdot \cdot \cdot N2B$	0.90 (4)	1.90 (4)	2.704 (5)	148 (3)
C5A-H5AA···O14	0.97	2.10	2.823 (12)	130
$C6A - H6AB \cdot \cdot \cdot O12^{i}$	0.96	2.48	3.40 (2)	160
C6A-H6AC···O14	0.96	2.50	3.14 (2)	124
$C6A - H6AC \cdots O11B$	0.96	2.46	3.085 (11)	122
$C7A - H7AB \cdots O13^{i}$	0.97	2.42	3.27 (2)	145
$C12B - H12A \cdots O11A^{ii}$	0.93	2.47	3.266 (8)	143
$C4-H4A\cdots O14A$	0.93	2.56	3.406 (14)	151
$C5A - H5AB \cdots O11B^{i}$	0.97	2.34	3.307 (15)	178
$C6B - H6BC \cdot \cdot \cdot O13A^{iii}$	0.96	2.46	3.223 (18)	136
$C8B - H8BB \cdot \cdot \cdot O13A^{iii}$	0.97	2.44	3.394 (7)	168
$C5B-H5BA\cdots O22B^{iv}$	0.97	2.18	2.944 (19)	135
C5 <i>B</i> −H5 <i>BB</i> ···O21	0.97	2.55	3.266 (15)	131
$C8B - H8BA \cdot \cdot \cdot O22^{v}$	0.97	2.53	3.252 (16)	131
$C8B - H8BA \cdots O24B^{v}$	0.97	2.56	3.51 (3)	167
$C10B - H10A \cdots O21B^{v}$	0.93	2.37	3.25 (2)	158
$C6B - H6BA \cdots O23B$	0.96	1.93	2.578 (15)	123
$C6B - H6BB \cdot \cdot \cdot O24B^{iv}$	0.96	2.52	3.44 (3)	161
$C8A - H8AA \cdots O24^{vi}$	0.97	2.29	3.146 (13)	147

Symmetry codes: (i) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (ii) -x + 1, -y, -z + 1; (iii) -x + 1, -y + 1, -z + 1; (iv) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (v) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (vi) $x + \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: *XSCANS* (Bruker, 1997; cell refinement: *XSCANS*; data reduction: *SHELXTL* (Bruker, 2000); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

RJB acknowledges the Laboratory for the Structure of Matter at the Naval Research Laboratory for access to their diffractometers.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2378).

References

- Bruker (1997). XSCANS. Version 2.20. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2000). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cruse, R. W., Kaderli, S., Meyer, C. J., Zuberbuhler, A. D. & Karlin, K. D. (1988). J. Am. Chem. Soc. 110, 5020-5024.
- Ghosh, D. & Mukherjee, R. (1998). *Inorg. Chem.* **37**, 6597–6605. Karlin, K. D., Hayes, J. C., Gultneh, Y., Cruse, R. W., McKown, J. W., Hutchinson, J. P. & Zubieta, J. (1984). J. Am. Chem. Soc. 106, 2121-2128. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-
- 359.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, o4891-o4892 [doi:10.1107/S1600536807060576]

N,*N*'-Dimethyl-*N*,*N*'-bis[2-(2-pyridyl)ethyl](*p*-phenylenedimethylene)diammonium bis(perchlorate)

T. B. Yisgedu, Y. T. Tesema, Y. Gultneh and R. J. Butcher

Comment

The stucture of the title compound, (I), is shown below. Dimensions are available in the archived CIF.

In the title compound $C_{24}H_{32}N_4^{2+} \cdot 2CIO_4^{-}(I)$, the two nitrogen atoms of the amine are protonated. The nitrogen atoms of the pyridyl ring are intramolecularly hydrogen bonded to the protonating protons of the amine as well as perchlorate oxygen atoms. In addition there are weak C—H…O interactions which link the formula units into chains in the 1 0 1 direction.

The *m*-xylyl-based dinucleating ligand, α, α' -bis[*N*-methyl-*N*-(2-pyridylethyl)amino]-*m*-xylene, had been synthesized and used to make dicopper(I) complexes in modeling the tyrosinase monooxygenase active site (Ghosh & Mukherjee, 1998). Several ligands consisting of a *m*-xylyl spacer bridging two tridentate donors have been used to synthesize dinuclear copper complexes and the monooxygenase activities of these complexes has been reported extensively (Karlin *et al.*, 1984; Cruse *et al.*, 1988).

Experimental

The neutral ligand α, α' -bis[*N*-methyl-*N*-(2-pyridylethyl)amino]-*m*-xylene, ligand was synthesized according to a literature method of Ghosh & Mukherjee (1998). The perchlorate salt of the protonated ligand (1) was formed as a side product of the reaction for the synthesis of a Ni(II) complex by the reaction of the neutral ligand with Ni(ClO4)2.6H2O in methanol. Slow evaporation of the methanol solution leads to the isolation of crystals of 1 suited for crystallographic structure determination.

Refinement

Each bridging perchlorates is disordered is disordered over three comformations with occupancy factors of 0.482 (2), 0.331 (2), 0.187 (4) and 0.532 (8), 0.324 (4) 133 (7), respectively. These were idealized to tetrahedral geometry. The N—H atoms were refined isotropically while C—H distances were idealized at 0.93 (aromatic C—H), 0.96 (CH₃), and 0.97 (CH₂) Å and $U_{iso}(H) = 1.2U_{eq}(C)$ (1.5 $U_{eq}(C)$ for the CH₃ protons).

Figures

Fig. 1. The title compound with numbering scheme used. Hydrogen bonding interactions shown as dotted lines. Ellipsoids are drawn at the 20% probability level.

Fig. 2. The packing arrangement viewed down the *b* axis showing the intramolecular O—H…O and intermolecular N—H…O hydrogen bonding interactions (dashed bonds).

N,*N*'-Dimethyl-*N*,*N*'-bis[2-(2-pyridyl)ethyl](*p*-phenylenedimethylene)diammonium bis(perchlorate)

Crystal data	
$C_{24}H_{32}N_4^{2+}\cdot 2ClO_4^{-}$	$F_{000} = 1208$
$M_r = 575.44$	$D_{\rm x} = 1.386 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 15.443 (3) Å	Cell parameters from 40 reflections
b = 11.484 (2) Å	$\theta = 2.2 - 12.5^{\circ}$
c = 16.046 (3) Å	$\mu = 0.29 \text{ mm}^{-1}$
$\beta = 104.284 \ (18)^{\circ}$	T = 296 (2) K
$V = 2757.6 (9) \text{ Å}^3$	Plate, colourless
Z = 4	$0.45\times0.34\times0.12~mm$

Data collection

Bruker P4 diffractometer	$R_{\text{int}} = 0.026$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 27.5^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.1^{\circ}$
T = 296(2) K	$h = 0 \rightarrow 20$
ω scans	$k = 0 \rightarrow 14$
Absorption correction: empirical (using intensity measurements) ψ-scan (North <i>et al.</i> , 1968)	<i>l</i> = −20→20
$T_{\min} = 0.794, \ T_{\max} = 0.946$	3 standard reflections
6558 measured reflections	every 97 reflections
6329 independent reflections	intensity decay: <2%
2137 reflections with $I > 2\sigma(I)$	

Refinement

Hydrogen site location: inferred from neighbouring	g
sites	
$R[F^2 > 2\sigma(F^2)] = 0.059$ H atoms treated by a mixture of independent and constrained refinement	
$wR(F^{2}) = 0.172$ $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0536P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$	
$S = 0.95 \qquad (\Delta/\sigma)_{\rm max} = 0.009$	

6329 reflections	$\Delta \rho_{\text{max}} = 0.18 \text{ e } \text{\AA}^{-3}$
536 parameters	$\Delta \rho_{min} = -0.17 \text{ e } \text{\AA}^{-3}$
272 restraints	Extinction correction: SHELXL97 (Sheldrick, 1997), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0028 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Cl1	0.71817 (9)	0.42115 (10)	0.40926 (8)	0.0785 (4)	
Cl2	0.11481 (9)	0.20277 (12)	0.24929 (9)	0.0873 (4)	
O11	0.6909 (17)	0.375 (3)	0.4785 (11)	0.173 (13)	0.187 (4)
O12	0.6568 (14)	0.5038 (18)	0.3686 (18)	0.142 (15)	0.187 (4)
O13	0.8008 (9)	0.473 (2)	0.4383 (16)	0.18 (2)	0.187 (4)
O14	0.7234 (19)	0.333 (2)	0.3520 (15)	0.192 (13)	0.187 (4)
011A	0.6854 (9)	0.3173 (8)	0.4315 (8)	0.152 (9)	0.482 (19)
O12A	0.8093 (5)	0.4285 (16)	0.4438 (13)	0.162 (8)	0.482 (19)
O13A	0.6763 (15)	0.5138 (10)	0.4377 (13)	0.191 (8)	0.482 (19)
O14A	0.7017 (13)	0.4277 (12)	0.3199 (3)	0.120 (5)	0.482 (19)
O11B	0.7525 (15)	0.4199 (14)	0.3371 (10)	0.139 (9)	0.331 (19)
O12B	0.7804 (13)	0.4657 (14)	0.4784 (8)	0.148 (9)	0.331 (19)
O13B	0.6954 (11)	0.3085 (7)	0.4262 (9)	0.110 (9)	0.331 (19)
O14B	0.6422 (8)	0.4903 (14)	0.3925 (15)	0.117 (8)	0.331 (19)
O21	0.1794 (11)	0.2473 (18)	0.2104 (13)	0.183 (11)	0.334 (4)
O22	0.0568 (10)	0.1299 (12)	0.1899 (10)	0.138 (10)	0.334 (4)
O23	0.0659 (12)	0.2936 (12)	0.2724 (12)	0.188 (12)	0.334 (4)
O24	0.1558 (13)	0.1375 (13)	0.3213 (7)	0.170 (11)	0.334 (4)
O21A	0.1418 (6)	0.2731 (9)	0.1895 (5)	0.137 (5)	0.532 (8)
O22A	0.0880 (8)	0.2722 (8)	0.3099 (6)	0.162 (6)	0.532 (8)
O23A	0.0431 (6)	0.1323 (9)	0.2071 (6)	0.142 (7)	0.532 (8)
O24A	0.1859 (6)	0.1324 (8)	0.2915 (6)	0.123 (4)	0.532 (8)
O21B	0.0276 (8)	0.246 (2)	0.2331 (18)	0.098 (10)	0.133 (7)
O22B	0.1181 (19)	0.0929 (11)	0.2870 (16)	0.088 (10)	0.133 (7)
O23B	0.1721 (18)	0.278 (2)	0.3061 (16)	0.193 (17)	0.133 (7)
O24B	0.141 (2)	0.196 (3)	0.1725 (11)	0.159 (16)	0.133 (7)

N1A	0.6971 (2)	0.2649 (3)	0.1681 (2)	0.0652 (10)
H1NA	0.674 (2)	0.334 (3)	0.178 (2)	0.068 (13)*
N2A	0.6175 (2)	0.4745 (3)	0.1216 (2)	0.0732 (10)
N1B	0.3724 (2)	0.3260 (3)	0.3469 (2)	0.0671 (10)
H1NB	0.354 (2)	0.254 (3)	0.356 (2)	0.065 (13)*
N2B	0.3710 (2)	0.1169 (3)	0.4240 (2)	0.0677 (9)
C1	0.4331 (4)	0.0575 (5)	0.1654 (3)	0.0996 (16)
H1A	0.4017	-0.0086	0.1416	0.118 (18)*
C2A	0.5233 (4)	0.0640 (4)	0.1725 (3)	0.0856 (14)
H2AA	0.5528	0.0023	0.1540	0.088 (14)*
C3A	0.5704 (3)	0.1621 (4)	0.2071 (2)	0.0643 (11)
C4	0.5241 (3)	0.2525 (3)	0.2343 (2)	0.0598 (10)
H4A	0.5551	0.3191	0.2576	0.065 (11)*
C5A	0.6696 (3)	0.1685 (4)	0.2188 (3)	0.0707 (12)
H5AA	0.6979	0.1799	0.2793	0.086 (14)*
H5AB	0.6907	0.0951	0.2013	0.099 (15)*
C6A	0.7963 (3)	0.2768 (5)	0.1900 (3)	0.0903 (15)
H6AA	0.8124	0.3450	0.1626	0.14 (2)*
H6AB	0.8220	0.2093	0.1703	0.15 (2)*
H6AC	0.8183	0.2838	0.2512	0.113 (18)*
C7A	0.6590 (3)	0.2513 (4)	0.0731 (3)	0.0769 (13)
H7AA	0.5952	0.2373	0.0627	0.070 (12)*
H7AB	0.6856	0.1833	0.0536	0.096 (15)*
C8A	0.6737 (3)	0.3546 (4)	0.0208 (3)	0.0823 (13)
H8AA	0.6468	0.3385	-0.0394	0.091 (14)*
H8AB	0.7374	0.3641	0.0273	0.085 (14)*
C9A	0.6363 (3)	0 4672 (4)	0.0445(3)	0.0695 (12)
C10A	0.6229 (3)	0.5617(5)	-0.0115(3)	0.0883 (15)
H10B	0.6352	0 5555	-0.0652	0.13 (2)*
C11A	0.5917 (3)	0.6633 (6)	0.0133 (4)	0.0985(16)
H11B	0 5848	0.7279	-0.0226	0.104(17)*
C12A	0.5704 (3)	0.6708 (5)	0.0913 (4)	0.0926(15)
H12R	0.5474	0.7389	0.1088	0.0920(13) 0.105(18)*
C13A	0.5844 (3)	0.5733 (5)	0.1425 (3)	0.0831(13)
H13A	0.5697	0.5771	0.1953	0.0001(10)
C2B	0.3888 (3)	0.1470 (5)	0.1929 (3)	0.070(13)
Нави	0.3277	0.1470 (3)	0.1929 (3)	0.0000(14) 0.101(16)*
C3B	0.3277 0.4331(3)	0.2459 (3)	0.1001	0.101(10) 0.0610(11)
C5B	0.4331(3) 0.3845(3)	0.2433(3)	0.2270(2)	0.0017(11) 0.0726(12)
Н5ВА	0.4176	0.4159	0.2576	0.0720(12) 0.071(12)*
H5BR	0.3263	0.3535	0.2370	0.071(12) 0.085(14)*
C6B	0.3203	0.3333	0.2109 0.3653(4)	$0.003(14)^{-1}$
Нава	0.3074 (4)	0.4120 (3)	0.3033 (4)	0.0983(10) 0.15(3)*
H6BB	0.2330	0.4888	0.3208	0.15(3)
H6BC	0.2950	0.3030	0.4197	0.10(3)
C7R	0.2950	0.3737	0.4124(2)	$0.00+(14)^{\circ}$
	0.4374 (3)	0.3270 (4)	0.4134 (3)	0.0741(12) 0.116(10)*
11/DA U7DD	0.4010	0.4002	0.4210	$0.110(18)^{\circ}$
	0.3023	0.2000	0.3930	$0.091(14)^{*}$
COD	0.4310 (3)	0.2793 (4)	0.4998 (3)	0.0770(13)

H8BA	0.5097	0.2848	0.5402	0.081 (13)*
H8BB	0.4109	0.3289	0.5212	0.104 (16)*
C9B	0.4194 (3)	0.1558 (4)	0.4983 (3)	0.0636 (11)
C10B	0.4389 (3)	0.0866 (5)	0.5711 (3)	0.0786 (13)
H10A	0.4731	0.1155	0.6230	0.108 (18)*
C11B	0.4070 (4)	-0.0249 (6)	0.5655 (4)	0.0921 (16)
H11A	0.4198	-0.0724	0.6140	0.113 (18)*
C12B	0.3565 (3)	-0.0673 (5)	0.4895 (4)	0.0907 (15)
H12A	0.3337	-0.1426	0.4845	0.14 (2)*
C13B	0.3414 (3)	0.0077 (4)	0.4209 (3)	0.0764 (12)
H13B	0.3079	-0.0197	0.3682	0.071 (13)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0866 (9)	0.0714 (9)	0.0784 (9)	-0.0058 (8)	0.0220 (7)	0.0007 (7)
Cl2	0.0897 (10)	0.0810 (9)	0.0872 (10)	0.0031 (8)	0.0141 (8)	0.0132 (8)
011	0.29 (3)	0.13 (2)	0.14 (2)	-0.08 (2)	0.12 (2)	-0.01 (2)
012	0.18 (3)	0.12 (2)	0.14 (3)	0.03 (2)	0.05 (2)	0.07 (2)
O13	0.16 (3)	0.13 (2)	0.17 (3)	-0.13 (2)	-0.09 (2)	0.12 (2)
O14	0.19 (2)	0.15 (2)	0.22 (3)	0.06 (2)	0.03 (2)	-0.12 (2)
011A	0.121 (11)	0.117 (16)	0.22 (2)	-0.046 (11)	0.043 (12)	0.043 (14)
012A	0.120 (10)	0.164 (13)	0.162 (14)	-0.027 (8)	-0.041 (9)	0.086 (11)
O13A	0.32 (2)	0.131 (9)	0.137 (12)	0.091 (11)	0.090 (13)	-0.060 (9)
O14A	0.177 (13)	0.140 (10)	0.043 (5)	-0.081 (9)	0.027 (5)	-0.022 (5)
O11B	0.205 (19)	0.096 (11)	0.171 (18)	-0.058 (13)	0.151 (16)	-0.044 (12)
O12B	0.158 (16)	0.173 (18)	0.097 (11)	-0.052 (15)	0.004 (11)	-0.074 (13)
O13B	0.19 (2)	0.070 (14)	0.072 (11)	-0.023 (13)	0.034 (12)	0.044 (10)
O14B	0.119 (11)	0.150 (16)	0.087 (13)	0.067 (10)	0.036 (10)	-0.005 (10)
O21	0.108 (14)	0.23 (2)	0.23 (2)	-0.044 (14)	0.074 (15)	-0.02 (2)
O22	0.19 (2)	0.093 (13)	0.078 (9)	-0.009 (12)	-0.063 (12)	-0.032 (9)
O23	0.207 (19)	0.103 (13)	0.22 (2)	0.053 (13)	-0.006 (17)	-0.080 (14)
O24	0.26 (2)	0.19 (2)	0.034 (7)	0.072 (18)	-0.002 (11)	0.004 (9)
O21A	0.090 (7)	0.189 (11)	0.120 (7)	-0.047 (7)	0.001 (6)	0.085 (7)
O22A	0.223 (14)	0.102 (8)	0.212 (12)	0.039 (8)	0.150 (11)	0.002 (8)
O23A	0.095 (8)	0.175 (15)	0.151 (11)	-0.045 (9)	0.021 (8)	0.042 (10)
O24A	0.126 (7)	0.132 (8)	0.084 (7)	0.060 (6)	-0.024 (6)	0.001 (6)
O21B	0.091 (18)	0.09 (2)	0.10 (2)	0.029 (17)	0.014 (15)	-0.019 (17)
O22B	0.12 (2)	0.032 (12)	0.11 (2)	0.007 (14)	0.03 (2)	0.009 (14)
O23B	0.19 (3)	0.12 (2)	0.24 (3)	-0.01 (3)	0.01 (3)	-0.09 (3)
O24B	0.19 (3)	0.15 (3)	0.17 (3)	-0.04 (3)	0.11 (3)	0.03 (3)
N1A	0.064 (2)	0.071 (3)	0.065 (2)	0.005 (2)	0.0233 (18)	0.003 (2)
N2A	0.083 (2)	0.075 (3)	0.065 (2)	-0.004 (2)	0.0262 (19)	0.001 (2)
N1B	0.068 (2)	0.063 (3)	0.077 (3)	0.0106 (19)	0.030 (2)	0.010 (2)
N2B	0.065 (2)	0.066 (2)	0.071 (2)	-0.0051 (18)	0.0161 (19)	0.0024 (19)
C1	0.111 (4)	0.077 (4)	0.121 (4)	-0.030 (3)	0.047 (3)	-0.022 (3)
C2A	0.106 (4)	0.058 (3)	0.107 (4)	-0.009 (3)	0.053 (3)	-0.014 (3)
C3A	0.080 (3)	0.055 (3)	0.066 (3)	0.001 (2)	0.032 (2)	0.005 (2)

C4	0.076 (3)	0.047 (2)	0.060 (2)	-0.007 (2)	0.024 (2)	0.000(2)
C5A	0.083 (3)	0.064 (3)	0.072 (3)	0.009(2)	0.033 (2)	0.010(2)
C6A	0.062 (3)	0.120 (5)	0.089 (4)	0.003 (3)	0.020 (3)	0.006 (3)
C7A	0.078 (3)	0.090 (4)	0.067 (3)	-0.001 (3)	0.027 (2)	-0.003 (3)
C8A	0.084 (4)	0.106 (4)	0.063 (3)	0.006 (3)	0.028 (3)	0.009 (3)
C9A	0.054 (2)	0.084 (3)	0.069 (3)	-0.005 (2)	0.013 (2)	0.011 (3)
C10A	0.078 (3)	0.105 (4)	0.082 (4)	0.001 (3)	0.018 (3)	0.020 (3)
C11A	0.084 (4)	0.096 (5)	0.108 (5)	0.001 (3)	0.009 (3)	0.028 (4)
C12A	0.084 (3)	0.079 (4)	0.104 (4)	-0.001 (3)	0.004 (3)	-0.006 (4)
C13A	0.096 (4)	0.074 (3)	0.081 (3)	-0.002 (3)	0.026 (3)	-0.006(3)
C2B	0.079 (4)	0.089 (4)	0.098 (4)	-0.018 (3)	0.034 (3)	-0.002 (3)
C3B	0.069 (3)	0.060 (3)	0.062 (3)	-0.002 (2)	0.027 (2)	0.007 (2)
C5B	0.077 (3)	0.072 (3)	0.077 (3)	0.014 (3)	0.034 (3)	0.020 (2)
C6B	0.106 (4)	0.100 (5)	0.103 (4)	0.038 (3)	0.054 (4)	0.007 (3)
C7B	0.070 (3)	0.074 (3)	0.081 (3)	-0.006 (3)	0.022 (3)	-0.005 (2)
C8B	0.070 (3)	0.089 (4)	0.070 (3)	0.000 (3)	0.012 (2)	-0.015 (3)
C9B	0.054 (2)	0.075 (3)	0.064 (3)	0.006 (2)	0.020 (2)	0.002 (2)
C10B	0.076 (3)	0.102 (4)	0.061 (3)	0.026 (3)	0.023 (3)	0.012 (3)
C11B	0.086 (4)	0.101 (4)	0.102 (4)	0.028 (3)	0.046 (3)	0.041 (4)
C12B	0.080 (3)	0.076 (4)	0.124 (5)	0.010 (3)	0.039 (3)	0.026 (4)
C13B	0.068 (3)	0.072 (3)	0.087 (4)	-0.005 (3)	0.016 (3)	0.002 (3)

Geometric parameters (Å, °)

Cl1—O12B	1.375 (5)	С4—С3В	1.385 (5)
Cl1—O11A	1.377 (5)	C4—H4A	0.9300
Cl1—O14	1.379 (5)	С5А—Н5АА	0.9700
Cl1—O13A	1.380 (5)	С5А—Н5АВ	0.9700
Cl1—O12A	1.382 (5)	С6А—Н6АА	0.9600
Cl1—O13	1.382 (5)	С6А—Н6АВ	0.9600
Cl1—O13B	1.385 (5)	С6А—Н6АС	0.9600
Cl1—O12	1.386 (5)	C7A—C8A	1.503 (5)
Cl1—O11	1.386 (5)	С7А—Н7АА	0.9700
Cl1—O11B	1.387 (5)	С7А—Н7АВ	0.9700
Cl1—O14B	1.387 (5)	C8A—C9A	1.503 (6)
Cl1—O14A	1.396 (5)	C8A—H8AA	0.9700
Cl2—O23	1.391 (5)	C8A—H8AB	0.9700
Cl2—O24	1.392 (5)	C9A—C10A	1.391 (6)
Cl2—O24B	1.393 (5)	C10A—C11A	1.358 (7)
Cl2—O21A	1.393 (5)	C10A—H10B	0.9300
Cl2—O22B	1.394 (5)	C11A—C12A	1.373 (7)
Cl2—O22A	1.397 (5)	C11A—H11B	0.9300
Cl2—O24A	1.397 (5)	C12A—C13A	1.374 (6)
Cl2—O21	1.397 (5)	C12A—H12B	0.9300
Cl2—O21B	1.400 (5)	C13A—H13A	0.9300
Cl2—O23B	1.403 (5)	C2B—C3B	1.372 (6)
Cl2—O23A	1.404 (4)	C2B—H2BA	0.9300
Cl2—O22	1.411 (5)	C3B—C5B	1.506 (5)
N1A—C6A	1.491 (5)	C5B—H5BA	0.9700

N1A—C5A	1.496 (5)	C5B—H5BB	0.9700
N1A—C7A	1.500 (5)	C6B—H6BA	0.9600
N1A—H1NA	0.90 (4)	C6B—H6BB	0.9600
N2A—C13A	1.321 (5)	C6B—H6BC	0.9600
N2A—C9A	1.342 (5)	C7B—C8B	1.523 (5)
N1B—C6B	1.489 (5)	С7В—Н7ВА	0.9700
N1B—C5B	1.491 (5)	C7B—H7BB	0.9700
N1B—C7B	1.496 (5)	C8B—C9B	1.503 (6)
N1B—H1NB	0.90 (4)	C8B—H8BA	0.9700
N2B—C9B	1.319 (5)	C8B—H8BB	0.9700
N2B—C13B	1.331 (5)	C9B—C10B	1.384 (5)
C1—C2B	1.367 (6)	C10B—C11B	1.368 (6)
C1—C2A	1.372 (6)	C10B—H10A	0.9300
C1—H1A	0.9300	C11B—C12B	1.366 (7)
C2A—C3A	1.381 (5)	C11B—H11A	0.9300
C2A—H2AA	0.9300	C12B—C13B	1.372 (6)
C3A—C4	1.390 (5)	C12B—H12A	0.9300
C3A—C5A	1.499 (5)	C13B—H13B	0.9300
O11A—Cl1—O13A	110.5 (2)	Н6АВ—С6А—Н6АС	109.5
O11A—Cl1—O12A	110.6 (2)	N1A—C7A—C8A	114.2 (4)
O13A—Cl1—O12A	109.5 (2)	N1A—C7A—H7AA	108.7
O14—Cl1—O13	109.8 (3)	С8А—С7А—Н7АА	108.7
O12B—Cl1—O13B	110.5 (2)	N1A—C7A—H7AB	108.7
O14—Cl1—O12	109.4 (3)	С8А—С7А—Н7АВ	108.7
O13—Cl1—O12	109.3 (3)	Н7АА—С7А—Н7АВ	107.6
O14—C11—O11	109.6 (3)	C7A—C8A—C9A	114.6 (4)
O13—C11—O11	109.4 (3)	С7А—С8А—Н8АА	108.6
O12—Cl1—O11	109.2 (3)	С9А—С8А—Н8АА	108.6
O12B—Cl1—O11B	110.0 (2)	С7А—С8А—Н8АВ	108.6
O13B—Cl1—O11B	108.8 (3)	С9А—С8А—Н8АВ	108.6
O12B-Cl1-O14B	109.4 (3)	Н8АА—С8А—Н8АВ	107.6
O13B—Cl1—O14B	109.2 (3)	N2A—C9A—C10A	121.0 (5)
O11B-Cl1-O14B	108.9 (3)	N2A—C9A—C8A	118.1 (4)
O11A—Cl1—O14A	109.1 (2)	C10A—C9A—C8A	120.9 (4)
O13A—Cl1—O14A	108.5 (2)	C11A—C10A—C9A	119.2 (5)
O12A—Cl1—O14A	108.5 (2)	C11A—C10A—H10B	120.4
O23—Cl2—O24	110.3 (3)	C9A—C10A—H10B	120.4
O24B—Cl2—O22B	110.2 (3)	C10A—C11A—C12A	120.2 (6)
O21A—Cl2—O22A	109.8 (2)	C10A—C11A—H11B	119.9
O21A—Cl2—O24A	109.6 (2)	C12A—C11A—H11B	119.9
O22A—Cl2—O24A	109.0 (2)	C11A—C12A—C13A	117.1 (6)
O23—Cl2—O21	109.8 (3)	C11A—C12A—H12B	121.4
O24—Cl2—O21	109.8 (3)	C13A—C12A—H12B	121.4
O24B—Cl2—O21B	109.7 (3)	N2A—C13A—C12A	124.2 (5)
O22B—Cl2—O21B	109.5 (3)	N2A—C13A—H13A	117.9
O24B—Cl2—O23B	109.5 (3)	C12A—C13A—H13A	117.9
O22B—Cl2—O23B	109.1 (3)	C1—C2B—C3B	121.0 (5)
O21B—Cl2—O23B	108.9 (3)	С1—С2В—Н2ВА	119.5
O21A—Cl2—O23A	109.6 (2)	C3B—C2B—H2BA	119.5

O22A—Cl2—O23A	109.3 (2)	C2B—C3B—C4	118.1 (4)
O24A—Cl2—O23A	109.4 (2)	C2B—C3B—C5B	121.0 (4)
O23—Cl2—O22	109.2 (2)	C4—C3B—C5B	120.8 (4)
O24—Cl2—O22	108.9 (2)	N1B—C5B—C3B	113.4 (3)
O21—Cl2—O22	108.7 (3)	N1B—C5B—H5BA	108.9
C6A—N1A—C5A	110.6 (4)	C3B—C5B—H5BA	108.9
C6A—N1A—C7A	111.9 (3)	N1B—C5B—H5BB	108.9
C5A—N1A—C7A	112.5 (3)	C3B—C5B—H5BB	108.9
C6A—N1A—H1NA	107 (2)	H5BA—C5B—H5BB	107.7
C5A—N1A—H1NA	112 (2)	N1B—C6B—H6BA	109.5
C7A—N1A—H1NA	102 (2)	N1B—C6B—H6BB	109.5
C13A—N2A—C9A	118.2 (4)	Н6ВА—С6В—Н6ВВ	109.5
C6B—N1B—C5B	110.2 (3)	N1B—C6B—H6BC	109.5
C6B—N1B—C7B	112.6 (4)	Н6ВА—С6В—Н6ВС	109.5
C5B—N1B—C7B	112.1 (3)	H6BB—C6B—H6BC	109.5
C6B—N1B—H1NB	109 (2)	N1B—C7B—C8B	112.8 (4)
C5B—N1B—H1NB	113 (2)	N1B—C7B—H7BA	109.0
C7B—N1B—H1NB	99 (2)	С8В—С7В—Н7ВА	109.0
C9B—N2B—C13B	117.8 (4)	N1B—C7B—H7BB	109.0
C2B—C1—C2A	120.7 (5)	C8B—C7B—H7BB	109.0
C2B—C1—H1A	119.6	Н7ВА—С7В—Н7ВВ	107.8
C2A—C1—H1A	119.6	C9B—C8B—C7B	115.0 (4)
C1—C2A—C3A	120.1 (5)	C9B—C8B—H8BA	108.5
С1—С2А—Н2АА	120.0	C7B—C8B—H8BA	108.5
СЗА—С2А—Н2АА	120.0	C9B—C8B—H8BB	108.5
C2A—C3A—C4	118.3 (4)	C7B—C8B—H8BB	108.5
C2A—C3A—C5A	120.7 (4)	H8BA—C8B—H8BB	107.5
C4—C3A—C5A	120.9 (4)	N2B-C9B-C10B	121.7 (4)
C3B—C4—C3A	121.7 (4)	N2B—C9B—C8B	116.5 (4)
C3B—C4—H4A	119.1	C10B—C9B—C8B	121.7 (4)
C3A—C4—H4A	119.1	C11B—C10B—C9B	118.8 (5)
N1A—C5A—C3A	112.8 (3)	C11B-C10B-H10A	120.6
N1A—C5A—H5AA	109.0	C9B—C10B—H10A	120.6
СЗА—С5А—Н5АА	109.0	C12B-C11B-C10B	120.6 (5)
N1A—C5A—H5AB	109.0	C12B—C11B—H11A	119.7
СЗА—С5А—Н5АВ	109.0	C10B—C11B—H11A	119.7
Н5АА—С5А—Н5АВ	107.8	C11B—C12B—C13B	116.1 (5)
N1A—C6A—H6AA	109.5	C11B—C12B—H12A	122.0
N1A—C6A—H6AB	109.5	C13B—C12B—H12A	122.0
Н6АА—С6А—Н6АВ	109.5	N2B—C13B—C12B	124.9 (5)
N1A—C6A—H6AC	109.5	N2B—C13B—H13B	117.5
Н6АА—С6А—Н6АС	109.5	C12B—C13B—H13B	117.5
C2B—C1—C2A—C3A	-0.5 (8)	C2A—C1—C2B—C3B	0.6 (8)
C1—C2A—C3A—C4	0.1 (7)	C1—C2B—C3B—C4	-0.3 (7)
C1—C2A—C3A—C5A	177.4 (4)	C1—C2B—C3B—C5B	-179.7 (4)
C2A—C3A—C4—C3B	0.2 (6)	C3A—C4—C3B—C2B	-0.1 (6)
C5A—C3A—C4—C3B	-177.1 (3)	C3A—C4—C3B—C5B	179.3 (3)
C6A—N1A—C5A—C3A	173.1 (4)	C6B—N1B—C5B—C3B	-167.5 (4)
C7A—N1A—C5A—C3A	-61.0 (5)	C7B—N1B—C5B—C3B	66.3 (5)

C2A-C3A-C5A-N1A	118.5 (4)		C2B—C3B—C5B—N1B		82.5 (5)	
C4—C3A—C5A—N1A	-64.3 (5)		C4—C3B—C5B—N	-96.9 (5)		
C6A—N1A—C7A—C8A	-63.2 (5)		C6B—N1B—C7B—	C6B—N1B—C7B—C8B		
C5A—N1A—C7A—C8A	171.6 (4)		C5B—N1B—C7B—C8B		-165.9 (4)	
N1A—C7A—C8A—C9A	-58.1 (5)		N1B-C7B-C8B-C9B		60.0 (5)	
C13A—N2A—C9A—C10A	1.3 (6)		C13B—N2B—C9B-	C10B	-0.3 (6)	
C13A—N2A—C9A—C8A	-179.8 (4)		C13B—N2B—C9B-	C8B	-179.8 (4)	
C7A—C8A—C9A—N2A	18.6 (6)		C7B—C8B—C9B—	-N2B	-24.7 (5)	
C7A—C8A—C9A—C10A	-162.5 (4)		C7B—C8B—C9B—C10B		155.8 (4)	
N2A—C9A—C10A—C11A	1.0 (7)		N2B—C9B—C10B—C11B		0.0 (6)	
C8A—C9A—C10A—C11A	-177.9 (4)	C8B—C9B—C10B—C11B		C11B	179.5 (4)	
C9A—C10A—C11A—C12A	-2.5 (7)		C9B—C10B—C11B—C12B		-0.2 (7)	
C10A—C11A—C12A—C13A	1.7 (7)		C10B—C11B—C12B—C13B		0.6 (7)	
C9A—N2A—C13A—C12A	-2.1 (7)		C9B—N2B—C13B—C12B		0.8 (6)	
C11A—C12A—C13A—N2A	0.6 (7)	C11B—C12B—C13B—		B—N2B	-1.0 (7)	
Hydrogen-bond geometry (Å, °)						
D—H···A		<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A	
N1A—H1NA…N2A		0.90 (4)	1.95 (4)	2.721 (5)	143 (3)	
N1A—H1NA…O14A		0.90 (4)	2.45 (4)	3.056 (11)	125 (3)	
N1A—H1NA…O11B		0.90 (4)	2.72 (4)	3.180 (17)	113 (3)	
N1B—H1NB…N2B		0.90 (4)	1.90 (4)	2.704 (5)	148 (3)	
C5A—H5AA···O14		0.97	2.10	2.823 (12)	130	
C6A—H6AB···O12 ⁱ		0.96	2.48	3.40 (2)	160	
C6A—H6AC···O14		0.96	2.50	3.14 (2)	124	
C6A—H6AC···O11B		0.96	2.46	3.085 (11)	122	
C7A—H7AB···O13 ⁱ		0.97	2.42	3.27 (2)	145	
C12B—H12A…O11A ⁱⁱ		0.93	2.47	3.266 (8)	143	
C4—H4A…O14A		0.93	2.56	3.406 (14)	151	
C5A—H5AB···O11B ⁱ		0.97	2.34	3.307 (15)	178	
C6B—H6BC…O13A ⁱⁱⁱ		0.96	2.46	3.223 (18)	136	
C8B—H8BB…O13A ⁱⁱⁱ		0.97	2.44	3.394 (7)	168	
C5B—H5BA···O22B ^{iv}		0.97	2.18	2.944 (19)	135	
C5B—H5BB…O21		0.97	2.55	3.266 (15)	131	
C8B—H8BA···O22 ^v		0.97	2.53	3.252 (16)	131	
C8B—H8BA···O24B ^v		0.97	2.56	3.51 (3)	167	
C10B—H10A…O21B ^v		0.93	2.37	3.25 (2)	158	
C6B—H6BA…O23B		0.96	1.93	2.578 (15)	123	
C6B—H6BB···O24B ^{iv}		0.96	2.52	3.44 (3)	161	
C8A—H8AA…O24 ^{vi}		0.97	2.29	3.146 (13)	147	

Symmetry codes: (i) -*x*+3/2, *y*-1/2, -*z*+1/2; (ii) -*x*+1, -*y*, -*z*+1; (iii) -*x*+1, -*y*+1, -*z*+1; (iv) -*x*+1/2, *y*+1/2, -*z*+1/2; (v) *x*+1/2, -*y*+1/2, *z*+1/2; (vi) *x*+1/2, -*y*+1/2, *z*-1/2.

Fig. 1

Fig. 2